
COMPLIANCE COMPONENT 
 
  
 

DEFINITION 
Name Database Management Systems – Integrity 

Description 

Data Integrity is an umbrella term that refers to the consistency, accuracy, and correctness 
of data stored in a database.  Data integrity is not about physical security, fault tolerance, or 
data preservation (backups).  Think of data integrity in terms of the old adage: 'garbage in, 
garbage out'.  Data integrity is about keeping the garbage out.  There are four primary types 
of data integrity: entity, domain, referential, and user-defined.  In general terms; entity 
integrity applies at the row level; domain integrity applies at the column level; and referential 
integrity applies at the table level. 
 
1. Entity integrity ensures that each row in the table is uniquely identified.  In other words, 

entity integrity ensures a table does not have any duplicate rows. 
2. Domain integrity requires that a set of data values fall within a specific range (domain) in 

order to be valid.  In other words, domain integrity defines the permissible entries for a 
given column by restricting the data type, format, or range of possible values. 

3. Referential integrity is concerned with keeping the relationships between tables 
synchronized.  

4. User-defined integrity refers to specific business rules not covered by the other integrity 
categories.  It is typically implemented through triggers and stored procedures. 

 
Data integrity is enforced by features such as check constraints, triggers, views, stored 
procedures, user defined functions, and/or referential constraints. 

Rationale 

Maintaining Integrity of the data is a cornerstone function of the DBMS.  Integrity constraints 
that the DBMS maintains are the business rules that are defined by the enterprise.  The 
DBMS should have the capability to enforce data integrity for all the applications that use 
the data. 

Benefits 

Data integrity rules defined centrally in the database are independent from the applications 
that use the database.  When data integrity is implemented directly on the database, the 
application developer does not need to worry about coding all of the data integrity features 
directly into the application.  Potential problems associated with coding data integrity into 
the application are 1) additional programming required; 2) inconsistencies and potential 
errors; 3) it is difficult to make changes; and, 4) weaker security (i.e., it is easier to bypass). 

ASSOCIATED ARCHITECTURE LEVELS 
Specify the Domain Name Information 

Specify the Discipline Name Database Management 
Specify the Technology Area 
Name Database Management Systems 

Specify the Product 
Component Name Relational Database Management Systems 

COMPLIANCE COMPONENT TYPE 
Document the Compliance 
Component Type Standard 

Component Sub-type       



COMPLIANCE DETAIL 

State the Guideline, Standard 
or Legislation 

Entity Integrity 
Entity integrity ensures that each row in a table has a unique identifier that allows 
one row to be distinguished from another.  Placing a primary key (PK) constraint 
on a specific column (although it can also be enforced with a UNIQUE constraint, a 
unique index, or the IDENTITY property) most often enforces entity integrity.  The 
PK constraint forces each value inserted into a column (or combination of 
columns) to be unique; if a user attempts to insert a duplicate value into the 
column(s), the PK constraint will cause the insert to fail.  A PK will not allow any 
Nulls to be inserted into the column(s) (A NULL entry would be disallowed even if it 
would be the only NULL in the column and therefore unique.).  A PK is referred to 
as a ' surrogate key' if the column contains no real data other than a uniqueness 
identifier If ‘real’ data can be used as a PK (e.g., a social security number), then it 
is referred to as an ' intelligent key'.  There can be only one PK per table.  A 
composite PK is a PK that consists of more than one column; it is used when none 
of the columns in the composite key is unique by itself.  Thus, there can be only 
one PK in a table but the PK can consist of more than one column.  If you need to 
enforce uniqueness on more than one column, use a PK constraint on one column 
and a UNIQUE constraint or IDENTITY property on any other columns that must 
not contain duplicates.  Non-PK columns on which uniqueness is enforced are 
referred to as alternative keys or AKs; they get their name from the fact that they 
are 'alternatives' to the PK and as such, make good candidates for indexing or  
'joining' on. 
 
Domain Integrity 
A domain in database terminology refers to a set of permissible values for a 
column (it should not be confused with an Internet or DNS 'domain' or a Windows 
NT 'domain').  Examples of domain integrity: correct data type; values that fall 
within the range supported by the system; null status; permitted size values.  
Domain integrity is sometimes referred to as 'attribute' integrity.  Domain Integrity 
can be enforced with a DEFAULT constraint, FOREIGN KEY, CHECK constraint 
and data types.  Data types limit fields to broad categories (e.g., integers).  A 
default is a definition of a value that can be inserted into a column; a rule is a 
definition of acceptable values that can be inserted into a column.  Rules and 
defaults are similar to constraints but are not ANSI standard; their continued use is 
not encouraged. 
 
Referential Integrity 
Referential integrity is typically enforced with a Primary Key (PK) and  
Foreign Key (FK) combination.  A Foreign Key (FK) is a column or combination of 
columns in one table (referred to as the 'child table') that takes its values from the 
PK in another table (referred to as the 'parent table'). 
 
Note that while PK-FK combinations represent logical relationships among data, 
they do not necessarily limit the possible access paths through the data. 
 
In order for referential integrity to be maintained, the FK in the 'child' table can only 
accept values that exist in the PK of 'parent' table. The primary objective of 
referential integrity is to prevent 'orphans;' i.e., records in the child table that 
cannot be related to a record in the Parent table.  Enforcing referential integrity 
means the relationship between the tables must be preserved when records are 
added (INSERT), changed (UPDATE), or deleted (DELETE). 
 
Although referential Integrity is often implemented with a PK-FK combination, 
database developers can also use triggers or stored procedures as well.  There 
are three fundamental approaches to implementing referential integrity: 1) restrict 



(disallow the data modification); 2) cascade (extend the data modification to 
related tables); or 3) nullify (set the values of matching FKs to NULL). 
 
Threats to Referential Integrity 
 
The UPDATE Threat to Referential Integrity  
 
UPDATEs can produce orphans when either the PK of the parent is changed or 
the FK of child is changed.  In order to preserve referential integrity, the offending 
UPDATE can be disallowed; this happens automatically when a FK references a 
PK.  Alternatively, the UPDATE can be 'cascaded' from the parent table to the 
child table.  A third option for dealing the UPDATE threat is to set the FK values to 
NULL when the PK is changed; this is generally not a good solution. 
 
The INSERT Threat to Referential Integrity 
 
The INSERT threat only applies to data modifications to the child table.  The 
INSERT threat involves adding records to the child table with no associated record 
in the parent table; again, the result is orphaned records.  There are two ways to 
preserve referential integrity in the case of an INSERT: The INSERT can be 
disallowed; this is what happens automatically when a FK references a PK.  
Alternatively, the FK can be set to null (but, as with the UPDATE threat, this option 
is generally not a good idea).  Note that unlike UPDATEs and DELETEs, INSERTs 
cannot be cascaded. 
 
The DELETE Threat to Referential Integrity 
 
The DELETE threat applies only to data modifications to the parent table.  The 
DELETE threat involves deleting records in the parent table when there are 
matching records in the child table; as always, the result is orphaned records.  Like 
UPDATEs, there are 3 ways to preserve referential integrity with a DELETE the 
offending DELETE can be disallowed; this happens automatically when a FK 
references a PK.  Alternatively, the DELETE can be 'cascaded' from the parent 
table to the child table.  The third (and bad) option for dealing the DELETE threat is 
to set the FK values to NULL when the PK is changed. 
 
User-Defined Integrity 
User-defined integrity refers to specific business rules not covered by the other 
integrity categories.  It is typically implemented through triggers and stored 
procedures. 

Document Source Reference # N/A 

Compliance Sources 
Name David R. Frick & Co. , CPA Website http://www.frick-cpa.com

Contact Information       

Name Microsoft Developer Network Website http://msdn.microsoft.com

Contact Information       

Name University of Texas Website 
http://www.utexas.edu/its/windows/d
atabase/datamodeling/dm/integrity.
html  

Contact Information       

http://www.frick-cpa.com/
http://msdn.microsoft.com/
http://www.utexas.edu/its/windows/database/datamodeling/dm/integrity.html
http://www.utexas.edu/its/windows/database/datamodeling/dm/integrity.html
http://www.utexas.edu/its/windows/database/datamodeling/dm/integrity.html


KEYWORDS 
List Keywords Referential integrity, user-defined integrity, domain integrity, entity integrity, data 

integrity, DB2, SQL Server, Oracle 

COMPONENT CLASSIFICATION 
Provide the Classification  Emerging      Current      Twilight     Sunset 

 Sunset Date       

COMPONENT SUB-CLASSIFICATION 
Sub-Classification Date Additional Sub-Classification Information 

  Technology Watch             

  Variance             

  Conditional Use             

Rationale for Component Classification 
Document the Rationale for 
Component Classification       

Migration Strategy 
Document the Migration 
Strategy       

Impact Position Statement 
Document the Position 
Statement on Impact        

CURRENT STATUS 
Provide the Current Status  In Development      Under Review      Approved     Rejected 

AUDIT TRAIL 
Creation Date 11-29-2004 Date Approved / Rejected 2-8-05 

 Reason for Rejection       

Last Date Reviewed       Last Date Updated       

 Reason for Update       

 
 


